

Quality First Quality

Crescenta Valley Water District (CVWD) supplies approximately 1.5 billion gallons of water each year to approximately 36,000 customers in the Crescenta Valley, which includes the unincorporated areas of La Crescenta, Montrose, and portions of Glendale and La Cañada-Flintridge.

For 2010, your tap water met all U.S. EPA and State drinking water health standards. CVWD vigilantly safeguards its water supplies, and once again the District is proud to report that the system did not violate any maximum contaminant levels (MCL).

Sources of Water

In 2010, approximately 61 percent of CVWD's source water came from local groundwater supplies in the Verdugo Basin. The majority of CVWD's groundwater wells are located along the Verdugo Wash, south of Honolulu Avenue.

The remaining 39 percent of CVWD's source water came from imported surface water supplied by Foothill Municipal Water District (FMWD), which is a member agency to Metropolitan Water District of Southern California (MWD). MWD supplies surface water from the State Water Project in Northern California and the Colorado River via the Colorado River Aqueduct, which carries water 242 miles from Lake Havasu to Lake Mathews, Riverside, CA.

In emergency situations, an interconnection between CVWD and Glendale Water and Power can be opened to supply our customers. Currently, another interconnection between CVWD and the Los Angeles Department of Water and Power is being put in place to further ensure our water system's reliability.

In 2010 the District supplied approximate 1.4 billion gallons of water.

Source Water Assessment

In August 2002, a source water assessment was conducted for all the active sources for CVWD. The sources are considered most vulnerable to dry cleaners and known contaminant plumes associated with automobile body and repair shops, gas stations, sewer collection systems, historic gas stations, furniture repair and manufacturing, and historic waste dumps and landfills.

A copy of the completed assessment may be viewed at the California Department of Public Health (CDPH) Drinking Water Field Operations Branch, 500 North Central Avenue, Suite 500, Glendale, CA 91203. You may request a summary of the assessment be sent to you by contacting Jeff O'Keefe, District Engineer at California Department of Public Health, at (818) 551-2044.

Questions?

For more information about this report, or for any questions relating to your drinking water, please call Christy Scott, Program Specialist, at (818) 248-3925.

Community Participation

The District is governed by a five-member Board of Directors elected at-large. They meet the 1st and 3rd Tuesday of each month at CVWD's main office. Public input is encouraged. Information regarding the District's Board and meetings can be found on the District web site at www.cvwd.com.

Additionally, the community is encouraged to attend special meetings such as strategic planning and budget workshops, which are listed in the paper and posted on the District's web site.

Tap vs. Bottled

Thanks in part to aggressive marketing, the bottled water industry has successfully convinced us all that water purchased in bottles is a healthier alternative to tap water. However, according to a four-year study conducted by the Natural Resources Defense Council, bottled water is not necessarily cleaner or safer than most tap water. In fact, about 25 percent of bottled water is actually just bottled tap water (40 percent, according to government estimates).

The Food and Drug Administration is responsible for regulating bottled water, but these rules allow for less rigorous testing and purity standards than those required by the U.S. EPA for community tap water. For instance, the high mineral content of some bottled waters makes them unsuitable for babies and young children. Furthermore, the FDA completely exempts bottled water that's packaged and sold within the same state, which accounts for about 70 percent of all bottled water sold in the United States.

People spend 10,000 times more per gallon for bottled water than they typically do for tap water. If you get your recommended eight glasses a day from bottled water, you could spend up to \$1,400 annually. The same amount of tap water would cost about 83 cents. Even if you installed a filter device on your tap, your annual expenditure would be far less than what you'd pay for bottled water.

For a detailed discussion on the NRDC study results, check out their Web site at www.nrdc.org/water/drinking/bw/exesum.asp.

Important Health Information

Nitrate in drinking water at levels above 45 ppm is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 ppm may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants

may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Copper Compliance

In June 2007, the District had copper concentrations (sampled at customers' inside taps) that exceeded the CDPH 1300 μ g/L Action Level. The District came back into compliance in 2008 and remains below the copper action level. Currently, the District is conducting enhanced monitoring (60 samples twice yearly) to ensure compliance with the US EPA's lead and copper rule.

Copper is an essential nutrient, but some people who drink water containing copper in excess of the Action Level over a relatively short amount of time may experience gastrointestinal distress. Some people who drink water containing copper in excess of the Action Level over many years may suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctors.

Lead and Copper have not been detected above the reporting limit in District groundwater sources. These metals can increase however when water contacts plumbing materials in your home. Because domestic plumbing is the primary source of these metals, drinking water regulations require testing tap water samples for lead and copper inside a number of representative homes every three years. If more than 10 percent of the tap samples from homes exceed the action level set by the U.S. EPA, the water system is required to treat the water in a way that reduces its corrosiveness.

Testing completed in 2007 showed only a few tap water samples with detectable lead levels, and those were well below the Action Levels. The District did exceed the Action Level for copper that year.

The District undertook an intensive copper corrosion study in 2008 to determine what water quality characteristics were causing some residents to see increased levels of copper in their homes. This study indicated that a slight adjustment in the pH level of the water served to residents would dramatically reduce the corrosion potential that contributes to higher copper levels.

The District has made both chemical and physical changes to adjust the pH level throughout the distribution system and has seen decreased copper results over the last three years.

Testing in 2008, 2009, and 2010 confirmed the District to be in compliance with the Action Level for Copper and Lead; however, the District will continue to monitor Copper and Lead every six (6) months for the next year to ensure continued compliance.

Substance (Unit of Measure)	Month / Year Sampled	AL	MCLG	Avg Amt Det (90th %ile)	Sites above AL/ Total Sites	Violation
Copper (ppm)	02/2010	1.3	0.3	0.80	1 / 68	No
Lead (ppb)	02/2010	15	0.2	3.4	1 / 68	No
Copper (ppm)	08/2010	1.3	0.3	0.51	0 / 69	No
Lead (ppb)	08/2010	15	0.2	3.4	0 / 69	No

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the California Department of Public Health (CDPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems;

Radioactive Contaminants, that can be naturally occurring or can be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Water Treatment Process

CVWD is required by the California Department of Public Health (CDPH) to test its groundwater for organic chemicals, minerals, metals, and bacteria; and is also required to perform daily and weekly tests for bacteria, nitrates, and total Trihalomethanes in the distribution system. Lead and copper are tested in tap water from selected residences. Metropolitan Water District of Southern California (MWD), the imported water supplier is responsible for water quality testing of their treated surface water. Local groundwater is disinfected with chlorine before blending with MWD's imported surface water. The Verdugo Basin is high in nitrates, which is probably due to the old septic systems and historical agricultural practices in the Crescenta Valley. CVWD treats some of the groundwater by a nitrate removal process at CVWD's Glenwood Facility. The remaining groundwater is blended with imported surface water to lower the nitrate levels below the Maximum Contaminant Level (MCL). The blend of imported surface water and groundwater delivered to your residence depends upon where you live in the community and the time of year.

Fact 5 Fiction

There is the same amount of water on Earth now as there was when the Earth was formed. (Fact: The water that comes from your faucet could contain molecules that dinosaurs drank!)

About half the water treated by public water systems is used for drinking and cooking. (Fiction: Actually, the amount used for cooking and drinking is less than 1 percent of the total water produced!)

A person can live about a month without food, but only about a week without water. (Fact: Dehydration symptoms generally become noticeable after only 2 percent of one's normal water volume has been lost.)

The first water pipes in the United States were made of cast iron. (Fiction: The first water pipes were actually made of fire-charred bored logs.)

The world's first municipal water filtration plant was opened in the United States. (Fiction: The first plant was actually opened in Paisley, Scotland, in 1832.)

A person must consume a half-gallon of water daily to live healthily. (Fact: A person should drink at least 64 ounces, or 8 cups, of water each day.)

One gallon of gasoline poured into a lake can contaminate approximately 750,000 gallons of water. (Fact)

Methyl-Tertiary-Butyl Ether (MTBE)

MTBE is a fuel oxygenate, which was used in gasoline to reduce carbon monoxide and ozone levels caused by auto emissions. Releases of MTBE into ground and surface water can occur through leaking underground storage tanks and pipelines, spills, emissions from marine engines into lakes and reservoirs, and, to some extent, from air deposition. MTBE can cause drinking water to take on a bad odor and taste. During 2010, the District had one well out of service due to levels of MTBE over the maximum contamination level (MCL). The District monitors for MTBE weekly to ensure that none of the District's other sources are affected. For additional information, please go to the EPA's drinking water website, http://water.epa.gov/drink/.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The District is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Sampling Results

CVWD is required by CDPH to test its groundwater for organic chemicals, minerals, metals, and bacteria; and is also required to perform daily and weekly tests for bacteria, nitrates, and total trihalomethanes in the distribution system. Lead and copper are tested in tap water from selected residences.

The state requires us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

				Crescenta <u>V</u> a	lley Water District	Imported water from Metropolitan Water District's F.E. Weymouth Plant			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED ¹	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Aluminum (ppm)	2010	1	0.6	NA	NA	0.17	ND-0.2	No	Erosion of natural deposits; residue from some surface water treatment processes
Antimony (ppb)	2010	6	20	0.04	0.28-0.58	NA	NA	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic (ppb)	2010	10	0.004	1.5	1.3–5.8	2.2	ND-2.7	No	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium (ppm)	2010	1	2	0.113	0.0087-0.15	0.11	ND-0.13	No	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Chromium (ppb)	2010	50	(100)	0.91	0.73–1.3	NA	NA	No	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Control of DBP precursors [TOC](ppm)	2010	TT	NA	NA	NA	2.1	1.6-2.4	No	Various natural and man-made sources
Fluoride (ppm)	2010	2.0	1	0.58 ²	0.29–1.12	0.8^{3}	$0.7-1.0^{3}$	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Gross Alpha Particle Activity (pCi/L)	2009	15	(0)	2.90	0.69-6.90	5.24	ND-7.64	No	Erosion of natural deposits
Gross Beta Particle Activity ⁵ (pCi/L)	2010	50	(0)	NA	NA	4.2	ND-9.7	No	Decay of natural and man-made deposits
Haloacetic Acids (ppb)	2010	60	NA	11.7	9.7–15.5	15 ⁶	8.1-24	No	By-product of drinking water disinfection
Mercury [inorganic] (ppb)	2010	2	1.2	0.08	0.035-0.2	NA	NA	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Methyl tert-Butyl Ether [MTBE] (ppb)	2010	13	13	ND^{12}	ND-0.53 ¹²	NA	NA	No	Leaking from underground gasoline storage tanks; discharge from petroleum and chemical factories
Nickel (ppb)	2010	100	12	ND	ND-1.8	NA	NA	No	Erosion of natural deposits; discharge from metal factories
Nitrate [as nitrate] (ppm)	2010	45	45	277	14–397	ND^8	ND-0.48	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Perchlorate (ppb)	2010	6	6	2.18	ND-3	NA	NA	No	An inorganic inorganic chemical used in solid rocket propellant, fireworks, explosives, flares, matches, and a variety of industries; historic aerospace or other industrial operations that used or use, store, or dispose of perchlorate and its salts
Radium 226 (pCi/L)	2009	5	0.05	0.11	ND-0.24	NA	NA	No	Erosion of natural deposits
Radium 228 (pCi/L)	2009	5	0.019	0.47	0.25-0.74	NA	NA	No	Erosion of natural deposits
Selenium (ppb)	2010	50	30	ND	ND-62	NA	NA	No	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive)
TTHMs [Total Trihalomethanes] (ppb)	2010	80	NA	45.3	44.1–46.2	449	26–659	No	By-product of drinking water disinfection
Tetrachloroethylene [PCE] (ppb)	2010	5	0.06	0.22	ND-0.53	NA	NA	No	Discharge from factories, dry cleaners, and auto shops (metal degreaser)
Thallium (ppb)	2010	2	0.1	ND	ND-0.16	NA	NA	No	Leaching from ore-processing sites; discharge from electronics glass, and drug factories
Total Coliform Bacteria [Total Coliform Rule] (% positive samples)	2010	More than 5.0% of monthly samples are positive	(0)	3.85	NA	NA	NA	No	Naturally present in the environment
Uranium (pCi/L)	2009	20	0.43	3.10	1.10-7.20	2.94	2.4-3.44	No	Erosion of natural deposits

Tap water samples we	ap water samples were collected for lead and copper analyses from sample sites throughout the community ®											
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	PHG (MCLG)	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE					
Copper (ppm)	2010	1.3	0.3	0.51	0/69	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives					
Lead (ppb)	2010	15	0.2	3.4	0/69	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits					

SECONDARY SUBSTANCES

				Crescenta Val	ley Water District	Metropolitan \	water from Water District's nouth Plant		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED ¹	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Aluminum (ppb)	2010	200	NS	NA	NA	170	ND-200	No	Erosion of natural deposits; residual from some surface water treatment processes
Chloride (ppm)	2010	500	NS	76	4.9–91	93	84–94	No	Runoff/leaching from natural deposits; seawater influence
Color (Units)	2010	15	NS	1	ND-1	1	1-1	No	Naturally occurring organic materials
Copper (ppm)	2010	1.0	NS	0.0031	0.0025-0.012	NA	NA	No	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Fluoride (ppm)	2010	2.0	1.0	0.2011	0.14-0.2911	NA	NA	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Iron (ppb)	2010	300	NS	0.08	ND-780	NA	NA	No	Leaching from natural deposits; industrial wastes
Manganese (ppb)	2010	50	NS	ND	ND-32	NA	NA	No	Leaching from natural deposits
Methyl tert-Butyl Ether [MTBE] (ppb)	2010	5	NS	ND^{12}	ND-0.53 ¹²	NA	NA	No	Leaking underground storage tanks; discharge from petroleum and chemical factories
Odor-Threshold (Units)	2010	3	NS	ND	ND-1	2	2–2	No	Naturally occurring organic materials
Specific Conductance (µS/cm)	2010	1,600	NS	807	340-870	950	460–1,000	No	Substances that form ions when in water; seawater influence
Sulfate (ppm)	2010	500	NS	119	28-140	210	160-250	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2010	1,000	NS	538	200–590	570	470-630	No	Runoff/leaching from natural deposits
Turbidity ¹³ (NTU)	2010	5	NS	0.58	0.29–1.57	0.05	0.03-0.06	No	Soil runoff
Zinc (ppm)	2010	5.0	NS	0.01	0.0048-0.031	NA	NA	No	Runoff/leaching from natural deposits; industrial wastes

¹The Amount Detected is reported as the highest Running Annual Average (RAA).

²CVWD does not fluoridate its local groundwater. Imported water from Metropolitan Water District (MWD) is fluoridated. The numbers reported are representative of water collected throughout the distribution system.

³ MWD was in compliance with all provisions of the State's Fluoridation System Requirements.

⁴ Sampled in 2010.

⁵ Effective 6/11/2006, the Gross Beta Particle Activity MCL is 4 millirem/year annual dose equivalent to the total body or any internal organ. 50 pCi/L is used as a screening level.

⁶ Detection Limit for reporting purposes is 1.0 ppb for each of the following: dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, and dibromoacetic acid; and 2.0 ppb for monochloroacetic acid.

⁷Results reported are from samples collected within the District's distribution system.

⁸ MWD received an exemption to report Nitrate as (N) instead of (NO3) for the CCR. The State MCL is 45 mg/L as Nitrate, which is the equivalent of 10 mg/L as N.

⁹Reporting level is 0.5 ppb for each of the following: bromodichloromethane, bromoform, chloroform, and dibromochloromethane.

¹⁰ Reported results are from August 2010.

[&]quot;The numbers reported are from the amount of naturally occurring Fluoride in the District's groundwater wells prior to the water being blended with imported water from MWD.

¹² Results reported are from samples within the distribution system after blending with imported water. The results are not representative of the MTBE levels in the local groundwater or well water.

¹³ The Amount Detected is reported as the Highest Running Annual Average (RAA). Turbidity, a measure of the cloudiness of the water, is an indicator of treatment performance.

¹⁴To convert hardness data from mg/L of CaCO3 to grains per gallons, divide the average by 17.1: 338/17.1 = 19.76 grains per gallon.

¹⁵ To convert hardness data from mg/L of CaCO3 to grains per gallons, divide the average by 17.1: 260/17.1 = 15.2 grains per gallon.

	UNREGULATED SUBSTANCES											
				alley Water rict	Metropolitan '	water from Water District's nouth Plant						
	SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED ¹	RANGE LOW-HIGH	TYPICAL SOURCE					
	Boron (ppb)	2010	71	65–97	120	120-130	Errosion of natural deposits					
	Chromium VI [Hexavalent Chromium] (ppb)	2010	0.37	0.12-0.5	0.08	0.04-0.10	Industrial waste discharge					
	Nickel (ppb)	2010	ND	ND-2.8	NA	NA	Erosion of natural deposits; discharge from metal factories					
	Sodium (ppm)	2010	37	17–44	94	83–98	Runoff/leaching from natural deposits; seawater influence					
	Vanadium (ppb)	2010	4.3	4.0-5.4	ND	ND-3.1	Erosion of natural deposits					

OTHER SUBSTANCES

		Valley Water trict	Metropolitan \	water from Water District's nouth Plant		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	AMOUNT DETECTED ¹	RANGE LOW-HIGH	TYPICAL SOURCE
Alkalinity (ppm)	2010	146	120-160	120	63–130	Naturally occurring
Calcium (ppm)	2010	83	36–97	64	49–71	Naturally occurring
Chlorate (ppb)	2010	NA	NA	110	NA	By-product of drinking water chlorination
Hardness [as CaCO3] (ppm)	2010	33814	140-39014	26015	84-30015	Leaching from natural deposits
Magnesium (ppm)	2010	31	12–37	26	20–28	Naturally occurring
N-Nitrosodimethylamine (NDMA)(ppb)	2010	NA	NA	ND	ND-0.003	By-product of drinking water chloramination; industrial processes
pH (Units)	2010	7.77	6.9–8.27	7.9	7.6–8.6	Naturally occurring
Potassium (ppm)	2010	3.7	3.2–4.3	4.6	3.8–5.0	Naturally occurring

Definitions

AL (**Regulatory Action Level**): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

 $\mu S/cm$ (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

micromhos: A measure of electrical conductance.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard

NTU (**Nephelometric Turbidity Units**): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

pCi/L (**picocuries per liter**): A measure of radioactivity.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (**Treatment Technique**): A required process intended to reduce the level of a contaminant in drinking water.